gravelamps.prior.discrete ========================= .. py:module:: gravelamps.prior.discrete .. autoapi-nested-parse:: Discrete Priors Implements priors for discrete distributions as needed for the Morse phase which may take one of three distinct values, or the millilensing number of images which must obviously be discrete Written by Mick Wright Ania Liu Justin Janquart .. !! processed by numpydoc !! Classes ------- .. autoapisummary:: gravelamps.prior.discrete.ImageNumber gravelamps.prior.discrete.UniformMorse Module Contents --------------- .. py:class:: ImageNumber(ncategories, name='num_images', latex_label='$n_{\\mathrm{signals}}$', unit=None) Bases: :py:obj:`bilby.core.prior.Categorical` Discrete Uniform Prior for handling the number of millilensing image signals. Lightly modified such that the minimum must be 1 Attributes --------- ncategories : int Number of potential images name : str Name of the parameter used, defaults to 'num_images' latex_label : str The latex compatible output to be used on plots, etc. Defaults to '$n_{\mathrm{signals}}$'. unit : str Unit of the parameter .. !! processed by numpydoc !! .. py:method:: rescale(val) Rescale a sample from the unit line element to one of the categories :Parameters: **val** : Union[float, int, array_like] Uniform probability between 0 and 1 :Returns: Union[float, array_like] .. .. !! processed by numpydoc !! .. py:method:: cdf(val) Calculate CDF for sample values :Parameters: **val** : Union[float, int, array_like] Sample values :Returns: float .. .. !! processed by numpydoc !! .. py:class:: UniformMorse(name='morse_phase', latex_label='$n$', unit=None) Bases: :py:obj:`bilby.core.prior.Categorical` Discrete Uniform Prior for handling the Morse phase. This is a restricted subset of the Categorical prior to the cases of 0, 0.5, 1 :Attributes: **name** : str Name of the parameter used, defaults to 'morse_phase' **latex_label** : str The latex compatible output to be used on plots, etc. Defaults to '$n$' **unit** : str Unit of the parameter .. rubric:: Methods =========== ========== **rescale** Maps the continuous distribution 0 to 1 to discrete distribution of 0, 0.5, 1 =========== ========== .. !! processed by numpydoc !! .. py:method:: rescale(val) Rescale a sample from the unit line element to one of the categories :Parameters: **val** : Union[float, int, array_like] Uniform proabability between 0 and 1 :Returns: Union[float, array_like] .. .. !! processed by numpydoc !! .. py:method:: cdf(val) Calculate CDF for sample values :Parameters: **val** : Union[float, int, array_like] Sample values :Returns: float .. .. !! processed by numpydoc !!