gravelamps.likelihood.strong ============================ .. py:module:: gravelamps.likelihood.strong .. autoapi-nested-parse:: Gravelamps Strong Lensing Likelihoods Following are functions handling likelihoods for strong lenisng anslyses Written by Mick Wright 2023 Classes ------- JointGWTransient Implementation of the model specific joint likelihood computation for strongly lensed events .. !! processed by numpydoc !! Classes ------- .. autoapisummary:: gravelamps.likelihood.strong.JointGWTransient Module Contents --------------- .. py:class:: JointGWTransient(interferometers_first, interferometers_second, generator_first, generator_second, priors=None) Bases: :py:obj:`bilby.core.likelihood.Likelihood` Implementation of the model specific joint likelihood computation for strongly lensed events .. !! processed by numpydoc !! .. py:property:: priors Prior implementation .. !! processed by numpydoc !! .. py:method:: noise_log_likelihood() Compute the noise log likeihood for the two images at the same time .. !! processed by numpydoc !! .. py:method:: calculate_snrs(waveform_polarisations, interferometer, parameters) Calculate the SNR for a detector .. !! processed by numpydoc !! .. py:method:: log_likelihood_image(polarisation, interferometers) Calculate the contribution to the log likelihood from an individual image .. !! processed by numpydoc !! .. py:method:: log_likelihood_ratio() Compute the log likelihood ratio for the two lensed images .. !! processed by numpydoc !! .. py:method:: log_likelihood() Compute the log likelihood for the event pair .. !! processed by numpydoc !!