gravelamps.lensing.strong_event_handling ======================================== .. py:module:: gravelamps.lensing.strong_event_handling .. autoapi-nested-parse:: Gravelamps Strong Lensing Event Handling Following are functions that are model agnostic and used to handle interactions between strong lensing events and the model specific functions within the rest of the module. Routines -------- get_event_signal Generate interferometer signal data from provided information get_model_generator Create Waveform Generator for specific model to be used for likelihood calculations generate_source_position_interpolator Generate interpolator function which maps relative magnification to source position. observables_to_model_parameters Convert lensing observables to model specific parameters generate_probability_interpolator Generate interpolator function object mapping source position and redshifted lnes mass to the probability of both occurring. .. !! processed by numpydoc !! Functions --------- .. autoapisummary:: gravelamps.lensing.strong_event_handling.get_event_signal gravelamps.lensing.strong_event_handling.get_model_generator gravelamps.lensing.strong_event_handling.generate_source_position_interpolator gravelamps.lensing.strong_event_handling.observables_to_model_parameters gravelamps.lensing.strong_event_handling.generate_probability_interpolator Module Contents --------------- .. py:function:: get_event_signal(args, event_data) Generate interferometer signal data from provided information User flags also allow the plotting of interferometric data and in the case of injections, the plotting of the true signal data. :Parameters: **args** : argparse.Namespace Object containing commandline arguments to the program **event_data** : dict Information about the event :Returns: **interferometers** : bilby.gw.detector.InterferometerList Object containing interferometer data for specified detectors .. !! processed by numpydoc !! .. py:function:: get_model_generator(args, module, event_data) Create Waveform Generator for specific model to be used for likelihood calculations Flags will also allow the plotting of the frequency domain strain for injections :Parameters: **args** : argparse.Namespace Object containing commandline arguments to the program **module** : module Module containing lens model functions **event_data** : dict Information about the event :Returns: **lensed_waveform_generator** : gravelamps.lensing.waveform_generator.SingleImageGenerator Object containing signal data .. !! processed by numpydoc !! .. py:function:: generate_source_position_interpolator(module, source_position_array, plot=False) Generate interpolator function which maps relative magnification to source position. :Parameters: **module** : module Module containing lens model functions **source_position_array** : ArrayLike Source position range over which to generate interpolator **plot** : bool, optional Generate plot of data that forms interpolator. Default is false :Returns: **source_position_interpolator** : scipy.interpolate.interp1d Interpolating function taking relative magnification and returning source position .. !! processed by numpydoc !! .. py:function:: observables_to_model_parameters(module, args, relative_magnification_data, time_delay_data) Convert lensing observables to model specific parameters :Parameters: **module** : module Module containing lens model functions **args** : argparse.Namespace Object containing commandline arguments to the program **relative_magnification_data** : ArrayLike Sample relative magnification values **time_delay_data** : ArrayLike Sample time delay values :Returns: **source_position_data** : ArrayLike Calculated sample source position values **mass_data** : ArrayLike Calculated sample redshited lens mass values .. !! processed by numpydoc !! .. py:function:: generate_probability_interpolator(source_position_data, mass_data, number_of_bins=30, plot=False, model=None) Generate interpolator function object mapping source position and redshifted lnes mass to the probability of both occurring. This is done by taking a normalised histogram of the occurrances of each parameter in the data. User flag allows the plotting of the histogram data that forms the basis fo the interpolator. .. !! processed by numpydoc !!