gravelamps.lensing.nfw ====================== .. py:module:: gravelamps.lensing.nfw .. autoapi-nested-parse:: Navarro, Frenk, White (NFW) Lensing Functions Following are functions performing calculations for a Navarro, Frenk, White lens mass density profile model. The module backend is based in libnfw. Written by Mick Wright 2022 Globals ------- _cdll : ctypes.CDLL Library of C++ functions necessary for calculations _additional_arguments : list of str Additional arguments required to construct interpolator data _additional_argument_types : list of types Types of the arguments that are given above _lens_parameters : list of str Parameters used for the model _SCALING : float Scaling constant used in the NFW profile _CRITICAL_VALUE : float Critical value of source position for scale. _phase_interpolator : Callable[[float], ArrayLike] Interpolating function to calculate morse phase for source position _image_position_interpolator : Callable[[float], ArrayLike] Interpolating function to calculate the image position for source position _amplification_factor_interpolator : Callable[[float], ArrayLike] Interpolating function for the region of amplification factor that is a single value i.e. above the critical value of source position Routines -------- __calculate_critical_value__ Calculates critical value of source position __generate_phase_interpolator__ Generate interpolator for phase required for zero minimum time delay __genrate_image_position_interpolator__ Generate interpolator for the image value. Valid only below the critical value __generate_amplification_factor_interpolator__ Generate interpolator for the amplification factor in the single value regime. Valid only above the critical value of the source position. set_scaling Set the value of _SCALING and regenerate the critical value and the interpolator functions find_image_positions Calculates the position of the lensed images min_time_delay_phase Calculats the value of the phase required for zero minimum time delay complete_amplification_factor Calculates geometric optics amplification factor with no additional information amplification_factor Calculates geometric optics amplification factor using the pregenerated interpolators where possible generate_interpolator_data Generates the amplification factor data files for use in interpolator generation .. !! processed by numpydoc !! Functions --------- .. autoapisummary:: gravelamps.lensing.nfw.set_scaling gravelamps.lensing.nfw.find_image_positions gravelamps.lensing.nfw.min_time_delay_phase gravelamps.lensing.nfw.complete_amplification_factor gravelamps.lensing.nfw.amplification_factor gravelamps.lensing.nfw.generate_interpolator_data Module Contents --------------- .. py:function:: set_scaling(scaling_constant: float) Set the value of _SCALING and regenerate the critical value and interpolator functions. :Parameters: **scaling_constant** : float Value to set the scaling constant to .. !! processed by numpydoc !! .. py:function:: find_image_positions(source_position) Calculates the position of the lensed images This calculation is done using the C++ function ImagePositionArray within libnfw. That function solves the lens equation to yield the positions of the lensed images. :Parameters: **source_position** : float Dimensionless displacement from the optical axis :Returns: **position_array** : Array of floats Positions of the images resulting from the lens equation .. !! processed by numpydoc !! .. py:function:: min_time_delay_phase(source_position) Calculates the value of the phase required for zero minimum time delay This calculation is done using the C++ function MinTimeDelayPhaseReal within libnfw which calculates the real value of the phase required for a minimum time delay of zero for the given scaling. :Parameters: **source_position** : float Dimensionless displacement from the optical axis :Returns: **phase** : float Phase required for zero minimum time delay .. !! processed by numpydoc !! .. py:function:: complete_amplification_factor(dimensionless_frequency, source_position) Calculates geometric optics amplification factor with no additional information The calculation is done using the C++ function AFGRealOnly within libnfw. This calculation does not require additional information beyond of a value of _SCALING. As a consequence it is always complete, but is not as computationally efficient compared to `amplification_factor`. :Parameters: **dimensionless_frquency** : float Dimensionless form of the frequency of interest **source_position** : float Dimensionless displacement from the optical axis :Returns: **amplification_value** : complex Amplification of signal produced by lensing .. !! processed by numpydoc !! .. py:function:: amplification_factor(dimensionless_frequency_array, source_position) Calculates geometric optics amplification factor using the pregenerated information where possible. This calculation has been designed to be more efficient than `complete_amplification_factor` by using the pregnenerated interpolating functions. Above a source position of `_CRITICAL_VALUE` it will use the single value `_amplification_factor_interpolator`. Below, it will use the C++ function `SimpleAmpFac` which will take in the image positions and phase computed from the relevant interpolators. :Parameters: **dimensionless_frquency_array** : Array of floats Dimensionless form of the frequencies of interest **source_position** : float Dimensionless displacement from the optical axis :Returns: **amplification_array** : Array of complex Amplification of signal produced by lensing over specified grid .. !! processed by numpydoc !! .. py:function:: generate_interpolator_data(config, args, file_dict) Generates the amplification factor data files for use in interpolator generation This is done via the C++ `GenerateLensData` function within `libnfw`. It will read in the specified grid files and fill the data files with the appropraite values of amplification factor. This can be done in wave and geometric optics. :Parameters: **config** : configparser.ConfigParser Object containing settings from user INI file **args** : argparse.Namespace Object containing commandline arguments to program **file_dict** : dict Contains paths to the interpolator grid and data files to fill .. !! processed by numpydoc !!